За счет чего самолет поднимается в воздух. Как и почему летают самолеты? Почему самолеты не летают через полюса

Возможность летать людей привлекала всегда, но создание подобных современным лайнерам аппаратов еще чуть больше сотни лет назад казалось абсурдом. Астроному американского происхождения Саймону Ньюкому даже приписывали математические доказательства того, что поднять в небо технику тяжелее воздуха не получится, однако сейчас ежедневно взлетают 11000-13000 судов. Рассказываем, что изменилось и как самолетам удается перевозить миллионы пассажиров.

Как выглядит полет с точки зрения физики

Чтобы взлететь, аппарату нужно компенсировать силу тяжести за счет подъемной и противостоять силе сопротивления воздуха тягой

Невозможный, согласно математическим расчетам Ньюкома, полет современных лайнеров можно объяснить простым опытом. Для него понадобятся 2 одинаковые банки, пара похожих мух и весы. На одну чашу ставят емкость с насекомым, которое неподвижно сидит на дне. На другой оказывается банка с постоянно летающей мухой.

По логике, первая чаша должна перевесить фактически пустую вторую емкость. Но на деле обе части мерила окажутся в балансе. Летающая муха поднимается в воздух за счет направленного вниз потока импульса, добавляя банке несколько граммов и уравновешивая силу тяжести.

В случае с самолетом принцип в общих чертах похож, только организовано все гораздо сложнее. Летят аппараты благодаря подъемной силе (ПС), возникающей при взаимодействии потоков воздуха и крыла с аэродинамической формой. Последние располагаются под углом. Острием они рассекают поток на направленный вниз и «набегающий», из-за чего под крылом образуется область высокого давления, а над ним - низкого. Разница в итоге и порождает подъемную силу.

Но чтобы взлететь, аппарату нужно компенсировать не только силу тяжести за счет подъемной, но и противостоять силе сопротивления воздуха тягой. В отличие от насекомых, судно не способно набрать нужные скорость и высоту с помощью взмахов крылышками. «Стать на воздух» самолет сможет на определенной скорости, набрать которую помогают двигатели.

Наглядное объяснение того, как и почему летают самолеты. Какую роль в передвижении по воздуху играют крыло, двигатель и другие части конструкции.

Скорость взлета и движения на эшелоне

Скорость (V) передвижения у лайнеров непостоянна - на подъеме необходима одна, а в полете другая.

  1. Взлет фактически начинается с момента движения судна по полосе. Аппарат разгоняется, набирает необходимый для отрыва от полотна темп и только тогда, благодаря увеличению подъемной силы, взмывает вверх. Необходимая для отрыва V прописана в руководстве к каждой модели и общих инструкциях. Моторы в этот момент работают на полную, дают огромную нагрузку на машину, отчего процесс считается одним из самых сложных и опасных.
  2. Чтобы зафиксироваться в пространстве и занять выделенный эшелон, необходимо достичь уже другой скорости. Полет в горизонтальной плоскости возможен только в том случае, если ПС компенсирует притяжение Земли.

Показатели скорости, с которой летательный аппарат способен подняться в воздух и задержаться там на определенное время, назвать трудно. Зависят они от характеристик конкретной машины и окружающих условий. У небольшого одномоторного V логично будет ниже, чем у гигантского пассажирского судна - чем крупнее аппарат, тем быстрее ему приходится двигаться.

Для «Боинга» 747-300 это примерно 250 километров в час, если плотность воздуха составит 1,2 килограмма на кубический метр. У Cessna 172 - примерно 100. Як-40 отрывается от полотна на 180 км/ч, Ту154М - на 210. Для Ил 96 показатель в среднем достигает 250, а у Airbus A380 - 268.

Из независимых от модели аппарата условий при определении числа опираются на:

  • направление и силу ветра - встречный помогает, подталкивая нос вверх
  • наличие осадков и влажность воздуха - могут осложнять или способствовать разгону
  • человеческий фактор - после оценки всех параметров решение принимает пилот

Скорость, характерную для эшелона, в технических характеристиках обозначают как «крейсерская» - это 80% от максимальных возможностей машины

Скорость на самом эшелоне также зависит непосредственно от модели судна. В технических характеристиках ее обозначают как «крейсерская» - это 80% от максимальных возможностей машины. Первый пассажирский «Илья Муромец» разгонялся всего до 105 километров в час. Сейчас же число среднем в 7 раз больше.

Если летите на Airbus A220, показатель находится на уровне 870 км/ч. А310 передвигается обычно со скоростью 860 километров в час, А320 - 840, А330 - 871, А340-500 - 881, А350 - 903, а гигант А380 - 900. У «Боингов» примерно так же. Boeing 717 летает на крейсерской в 810 километров в час. Массовый 737 - на 817-852 в зависимости от поколения, дальнемагистральный 747 - 950, 757 - на 850 км/ч, первый трансатлантический 767 - 851, Triple Seven - 905, а реактивный пассажирский 787 - 902. По слухам, компания занимается разработкой лайнера для гражданской авиации, который будет доставлять людей из одной точки в другую на V=5000. Но пока в топ самых быстрых в мире входят исключительно военные:

  • американский сверхзвуковой F-4 Phantom II пусть и уступил место более современным, но все еще входит в десятку с показателем в 2370 километров в час
  • одномоторный истребитель Convair F-106 Delta Dart с 2450 км/ч
  • боевой МиГ-31 - 2993
  • экспериментальный Е-152, чья конструкция легла в основу МиГ-25 - 3030
  • прототип XB-70 Valkyrie - 3 308
  • исследовательский Bell X-2 Starbuster - 3 370
  • МиГ-25 способен достичь 3492, но остановиться на этой отметке и не повредить двигатель невозможно
  • SR-71 Blackbird - 3540
  • мировой лидер X-15 с ракетным двигателем - 7 274

Возможно, и гражданские суда когда-нибудь смогут достигнуть этих показателей. Но точно не ближайшее время, пока главным фактором в вопросе остается безопасность пассажиров.

4 детали авиалайнера, от которых зависят летные качества

Летающие машины отличаются от обычных очень сложными конструкциями, предусматривающими каждую мелочь. И кроме очевидных деталей, на возможности и характеристики передвижения влияют и другие части - всего собрали 4 основных.

1. Крыло. Если при отказе двигателя можно долететь до ближайшего аэродрома на втором, а при неполадках сразу в двух - приземлиться с опытом пилота, без крыла от пункта отправления не отдалишься. Не будет его - не будет необходимой подъемной силы. В единственном числе о крыле говорят не случайно. Вопреки распространенному мнению, оно у самолета одно. Этим понятием обозначают всю плоскость, расходящуюся в обе стороны от борта.

Поскольку это главная деталь, отвечающая за нахождение в воздухе, ее конструкции уделяется очень много внимания. Форму строят по точным расчетам, выверяют и испытывают. Кроме того, крыло способно выдерживать огромные нагрузки, чтобы не ставить под угрозу главное - безопасность людей.

2. Закрылки и предкрылки. Большее количество времени крыло самолета имеет обтекаемую форму, но на взлете и посадке на нем появляются дополнительные поверхности. Выпускаются закрылки и предкрылки для того, чтобы увеличить площадь и справиться с действующими на аппарат силами во время серьезных нагрузок в начале и конце пути. При приземлении тормозят лайнер, не позволяют ему упасть слишком быстро, а на подъеме помогают удержаться в воздухе.

Приход лета в некоторые жаркие уголки нашей планеты приносит с собой не только изнурительный зной, но и задержки рейсов в аэропортах. Например, в Фениксе, штат Аризона, температура воздуха на днях достигла +48°С и авиакомпании были вынуждены отменить или перенести свыше 40 рейсов. В чём причина? Разве самолёты не летают в жару? Летают, но не при всякой температуре. По сообщениям СМИ, жара представляет особую проблему для самолётов Bombardier CRJ, максимальная рабочая температура взлёта для которых составляет +47,5°С. В то же время, большие самолёты от Airbus и Boeing могут летать и при температуре до +52°С градусов или около того. Разбираемся, чем вызваны такие ограничения.

Принцип подъёмной силы

Прежде чем пояснить, почему не каждый борт способен взлететь при высокой температуре воздуха необходимо осознать сам принцип, как летают самолёты. Конечно, каждый помнит ответ ещё со школы: «Всё дело в подъёмной силе крыла». Да, это верно, но не очень убедительно. Чтобы действительно понять законы физики, которые здесь задействованы, нужно обратить внимание на закон импульса . В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости.

На этом этапе вы можете подумать, что речь идёт об изменении импульса самолёта. Нет, вместо этого рассмотрим изменение импульса воздуха , набегающего на плоскость крыла. Представьте себе, что каждая молекула воздуха - это крошечный шар, который соударяется с самолётом. Ниже приведена диаграмма, которая показывает этот процесс.

Движущееся крыло сталкивается с воздушными шарами (то есть, молекулами воздуха). Шары изменяют свой импульс, что требует приложения силы. Поскольку действие равно противодействию, сила, которую крыло прикладывает к шарикам воздуха, имеет ту же величину, что и сила, с которой сами шарики воздействуют на крыло. Это приводит к двум результатам. Во-первых, обеспечивается подъёмная сила крыла. Во-вторых, появляется обратная сила - тяга. Вы не можете достичь подъёма без тяги .

Чтобы генерировать подъёмную силу, самолёт должен двигаться, а чтобы увеличить его скорость, вам нужна большая сила тяги. Если быть более точным, то вам потребуется ровно столько тяги, сколько нужно, чтобы сбалансировать силу сопротивления воздуха - тогда вы летите с той скоростью, с которой хотите. Как правило, эту тягу обеспечивают реактивный двигатель или пропеллер. Скорее всего, вы могли бы использовать даже ракетный двигатель, но в любом случае - вам нужен генератор тяги.

При чём здесь температура?

Если крыло сталкивается всего с одним шариком воздуха (то есть молекулой), это не приведёт к большой подъёмной силе. Чтобы увеличить подъёмную силу нужно много столкновений с молекулами воздуха. Добиться этого можно двумя путями:

  • двигаться быстрее , увеличивая число молекул, которые входят в контакт с крылом в единицу времени;
  • сконструировать крылья с большей площадью поверхности , потому что в таком случае крыло будет сталкиваться с большим числом молекул;
  • ещё один способ увеличения площади поверхности соприкосновения - использовать больший угол атаки за счёт наклона крыльев;
  • наконец, можно добиться большего числа столкновений крыла с молекулами воздуха, если плотность самого воздуха выше , то есть, количество самих молекул в единице объёма больше. Иными словами, увеличение плотности воздуха повышает подъёмную силу.

Этот вывод подводит нас к температуре воздуха. Что представляет собой воздух? Это множество микрочастиц, молекул, которые движутся прямо вокруг нас в разном направлении и с разной скоростью. И эти частицы сталкиваются друг с другом. По мере повышения температуры средняя скорость движения молекул также увеличивается. Увеличение температуры приводит к расширению газа, и одновременно - к уменьшению плотности воздуха . Вспомните, что нагретый воздух легче холодного, именно на этом явлении выстроен принцип воздухоплавания шаров-монгольфьеров.

Итак, для большей подъёмной силы нужна либо более высокая скорость, либо большая площадь крыла, либо больший угол атаки молекул на крыло. Ещё одно условие: чем выше значение плотности воздуха - тем больше подъёмная сила. Но верно и обратное: чем меньше плотность воздуха, тем меньше подъёмная сила. И это актуально для жарких уголков планеты. Из-за высокой температуры плотность воздуха слишком низкая для некоторых самолётов , её недостаточно, чтобы они могли взлететь.

Конечно, можно компенсировать снижение плотности воздуха за счёт увеличения скорости. Но как это осуществить в реальности? В таком случае необходимо устанавливать на самолёт более мощные двигатели, либо увеличивать длину взлётно-посадочной полосы. Поэтому для авиакомпаний гораздо проще некоторые рейсы просто отменить. Или, по крайней мере, перенести на вечер, раннее утро, когда температура окружающей среды буде ниже максимально допустимого предела.

Довольно странно наблюдать, как многотонная машина легко поднимается со взлетной полосы аэродрома и плавно набирает высоту. Казалось бы, поднять столь тяжелую конструкцию в воздух задача невыполнимая. Но, как видим, это не так. Почему самолет не падает, и за счет чего летит?

Ответ на этот вопрос лежит в тех физических законах, которые позволяют поднять в воздух летательные аппараты. Они верны не только в отношении планеров и легких спортивных самолетов, но и в отношении многотонных транспортных лайнеров, которые способны нести дополнительную полезную нагрузку. И вообще уж фантастическим, кажется полет вертолета, которые может не только двигаться по прямой линии, но и зависать на одном месте.

Полет летательных аппаратов стал возможен, благодаря совокупному использованию двух сил – подъемной, и силы тяги двигателей. И если с силой тяги все более или менее понятно, то с подъемной силой все обстоит несколько сложнее. Несмотря на то, что с этим выражением мы все хорошо знакомы, объяснить его может не каждый.

И так, какова природа появления подъемной силы?

Давайте внимательно посмотрим на крыло самолета, благодаря которому он и может держаться в воздухе. Снизу оно совершенно плоское, а сверху имеет сферическую форму, с выпуклостью наружу. Во время движения самолета воздушные потоки спокойно проходят под нижней частью крыла, не претерпевая каких — либо изменений. Но чтобы пройти над верхней поверхностью крыльев, воздушный поток должен сжаться. В результате мы получаем эффект продавленной трубы, сквозь которую должен пройти воздух.

Чтобы обогнуть сферическую поверхность крыла, воздуху понадобится больше времени, нежели при его прохождении под нижней, плоской поверхностью. По этой причине над крылом он движется быстрее, что, в свою очередь, приводит к возникновению разности давлений. Под крылом оно значительно больше, нежели над крылом, из-за чего и возникает подъемная сила. В данном случае действует закон Бернулли, с которым каждый из нас знаком со школьной скамьи. Самое главное в том, что разность давлений будет тем больше, чем выше скорость движения объекта. Вот и получается, что подъемная сила может возникать лишь при движении самолета. Она давит на крыло, заставляя его подниматься.

По мере разгона самолета по взлетной полосе, увеличивается и разность давлений, что приводит к возникновению подъемной силы. С набором скорости она постепенно растет, сравнивается с массой самолета, и как ее превысит, он взлетает. После набора высоты, пилоты уменьшают скорость, подъемная сила сравнивается с весом самолета, что заставляет его лететь в горизонтальной плоскости.

Чтобы самолет двигался вперед, его оснащают мощными двигателями, которые гонят воздушный поток в направлении крыльев. С их помощью можно регулировать интенсивность воздушного потока, а, следовательно, и силу тяги.

Чтобы подняться в воздух, самолетам требуется развить колоссальную мощность. Двигатели самолетов создают тягу, толкающую их вперед, в то время как особая форма корпуса и крыльев помогает им подниматься кверху.

Сила тяжести тянет самолеты вниз, как и любые другие тела. Однако самолетам удается удерживаться в воздухе именно благодаря воздействию самого воздуха. Обычно воздух давит на тело со всех сторон, но если он движется, то давит сильнее, чем воздух, который движется быстро.

Крылья самолета имеют особую форму, заставляющую воздух двигаться под ними медленнее, чем над ними. Когда самолет достигает определенной скорости, «медленный» воздух под его крыльями начинает давить на них сильнее, чем тот, что над ним — и самолет поднимается к небу. Возникающая при этом сила называется подъемной.

При выстреле из ружья стрелок ощущает отдачу — толчок приклада в плечо. Эта сила действует на приклад ружья очень короткое время — около 0,002 сек. Но на станок пулемета эта сила действует почти постоянно, пока пули вылетают из ствола.

Так же и летательный аппарат может получать постоянную подъемную силу, если он беспрерывно отбрасывает воздух вниз. Именно дли этого и нужны самолету крылья. Если крыло двигается горизонтально и при этом поставлено под углом к направлению движения (этот угол называется углом атаки), оно отбрасывает встречный воздух вниз и тем самым создает подъемную силу, направленную вверх.

Крыло, поставленное под углом атаки, отбрасывает при движении воздух вниз и этим создает подъемную силу.

Образование подъемной силы основано на законе механики о количестве движения (второй закон Ньютона):

m*(v 2 -v 1)=P*t

  • m — масса тела (в нашем случае это масса отбрасываемого воздуха);
  • v 2 — v 1 — изменение скорости тела (в нашем случае — вертикальная скорость отбрасываемого воздуха);
  • Р — сила, действующая на тело (в нашем случае она приложена к воздуху и направлена вниз),
  • t — время.

Следовательно,

P=m/t*(v 2 -v 1)

Так как всякое действие всегда встречает равное по величине и противоположно направленное противодействие (третий закон Ньютона), то подъемная сила Y будет равна силе Р, приложена к крылу самолета и направлена вверх: Y = - Р.

Величина подъемной силы зависит от массы ежесекундно отбрасываемого воздуха m/t, а она в свою очередь зависит от плотности воздуха р, скорости полета v и площади крыла S; вертикальная скорость воздуха v 2 — v 1 зависит от угла атаки крыла и скорости полета. Тогда величину подъемной силы можно выразить формулой:

Y=С y *pv2/2*S

где С y — коэффициент, который зависит от формы крыла и угла атаки.

Итак, подъемную силу можно создавать довольно просто, но для этого обязательно нужно, чтобы крыло в воздухе двигалось. Решается это по-разному: птицы, например, машут крыльями; планеры используют снижение — сопротивление воздуха преодолевает силой тяжести. Самолету же нужен специальный двигатель. Но, может быть, выгоднее повернуть этот двигатель так, чтобы его тяга компенсировала и тяжесть аппарата? В этом нет необходимости, так как подъемная сила крыла во много раз больше сопротивления воздуха. Отношение получаемой подъемной силы к сопротивлению называется аэродинамическим качеством. В настоящее время для дозвуковых самолетов это отношение достигает 25, а для сверхзвуковых — 7.

Развитие авиации во многом зависит от открытий и изобретений в различных областях науки и техники, и в первую очередь от развития науки обтекании тел газом — аэродинамики. Начала этой науки заложены исследования русских ученых Н. Е. Жуковского, С.А. Чаплыгина, С. А. Христиановича, немецких ученых Р. Прандтля, Т. Кармана и др. Кроме того, большую роль в развитии авиации играют: наука о механике полета, материаловедение, изобретения в промышленности, строящей двигатели, и в приборостроении.

Человек полетит, опираясь не на силу своих мускулов, а на силу своего разума.
Н. Е. Жуковский

Фото И. Дмитриева.

Рис. 1. При взаимодействии плоской пластины с потоком воздуха возникают подъёмная сила и сила сопротивления.

Рис. 2. При обтекании потоком воздуха выгнутого крыла давление на его нижней поверхности будет выше, чем на верхней. Разница в давлениях даёт подъёмную силу.

Рис. 3. Отклоняя ручку управления, лётчик изменяет форму руля высоты (1-3) и крыльев (4-6).

Рис. 4. Руль направления отклоняют педалями.

Вы когда-нибудь летали? Не на самолёте, не на вертолёте, не на воздушном шаре, а сами — как птица? Не приходилось? И мне не довелось. Впрочем, насколько я знаю, это не удалось никому.

Почему же человек не смог этого сделать, ведь кажется, нужно лишь скопировать крылья птицы, прикрепить их к рукам и, подражая пернатым, взмыть в поднебесье. Но не тут-то было. Оказалось, что человеку не хватает сил, чтобы поднять себя в воздух на машущих крыльях. Рассказами о таких попытках пестрят летописи всех народов, от древнекитайских и арабских (первое упоминание содержится в китайской хронике «Цаньханьшу», написанной ещё в I в. н.э.) до европейских и русских. Мастера в разных странах использовали для изготовления крыльев слюду, тонкие прутья, кожу, перья, но полететь так никому и не удалось.

В 1505 году великий Леонардо да Винчи писал: «… когда птица находится в ветре, она может держаться в нём без взмахов крыльями, ибо ту же роль, которую при неподвижном воздухе крыло выполняет в отношении воздуха, выполняет движущийся воздух в отношении крыльев при неподвижных крыльях». Звучит это сложно, но по сути не просто верно, а гениально. Из этой идеи следует: чтобы полететь, не нужно размахивать крыльями, нужно заставить их двигаться относительно воздуха. А для этого крылу нужно просто сообщить горизонтальную скорость. От взаимодействия крыла с воздухом возникнет подъёмная сила, и, как только её величина окажется больше величины веса самого крыла и всего, что с ним связано, начнётся полёт. Дело оставалось за малым: сделать подходящее крыло и суметь разогнать его до необходимой скорости.

Но опять возник вопрос: какой формы должно быть крыло? Первые эксперименты проводили с крыльями плоской формы. Посмотрите на схему (рис. 1). Если на плоскую пластину под небольшим углом действует набегающий поток воздуха, то возникают подъёмная сила и сила сопротивления. Сила сопротивления старается «сдуть» пластину назад, а подъёмная сила - поднять. Угол, под которым воздух дует на крыло, называется углом атаки. Чем больше угол атаки, то есть чем круче к потоку наклонена пластина, тем больше подъёмная сила, но вырастает и сила сопротивления.

Ещё в 80-х годах XIX века учёные выяснили, что оптимальный угол атаки для плоского крыла лежит в пределах от 2 до 9 градусов. Если угол сделать меньше - сопротивление будет небольшим, но и подъёмная сила маленькой. Если развернуться круче к потоку - сопротивление окажется так велико, что крыло превратится скорее в парус. Отношение величины подъёмной силы к величине силы сопротивления называется аэродинамическим качеством. Это один из самых важных критериев, относящихся к летательному аппарату. Оно и понятно, ведь чем выше аэродинамическое качество, тем меньше энергии тратит летательный аппарат на преодоление сопротивления воздуха.

Вернёмся к крылу. Наблюдательные люди очень давно заметили, что у птиц крылья не плоские. Всё в тех же 1880-х годах английский физик Горацио Филлипс провёл эксперименты в аэродинамической трубе собственной конструкции и доказал, что аэродинамическое качество выпуклой пластины значительно больше, чем плоской. Нашлось и довольно простое объяснение этому факту.

Представьте, что вам удалось сделать крыло, у которого нижняя поверхность плоская, а верхняя - выпуклая. (Очень просто склеить модель такого крыла из обычного листа бумаги.) Теперь посмотрим на вторую схему (рис. 2). Поток воздуха, набегающий на переднюю кромку крыла, делится на две части: одна обтекает крыло снизу, другая - сверху. Обратите внимание, что сверху воздуху приходится пройти путь несколько больший, чем снизу, следовательно, сверху скорость воздуха будет тоже чуть больше, чем снизу, не так ли? Но физикам известно, что с увеличением скорости давление в потоке газа падает. Смотрите, что получается: давление воздуха под крылом оказывается выше, чем над ним! Разница давлений направлена вверх, вот вам и подъёмная сила. А если добавить угол атаки, то подъёмная сила ещё увеличится.

Одним из первых вогнутые крылья сделал талантливый немецкий инженер Отто Лилиенталь. Он построил 12 моделей планеров и совершил на них около тысячи полётов. 10 августа 1896 года во время полёта в Берлине его планер перевернуло внезапным порывом ветра и отважный пилот-исследователь погиб. Теоретическое обоснование парения птиц, продолженное нашим великим соотечественником Николаем Егоровичем Жуковским, определило всё дальнейшее развитие авиации.

А теперь попробуем разобраться, как подъёмную силу можно изменять и использовать для управления самолётом. У всех современных самолётов крылья сделаны из нескольких элементов. Основная часть крыла неподвижна относительно фюзеляжа, а на задней кромке устанавливают как бы небольшие дополнительные крылышки-закрылки. В полёте они продолжают профиль крыла, а на взлёте, при посадке или при манёврах в воздухе могут отклоняться вниз. При этом подъёмная сила крыла возрастает. Такие же маленькие дополнительные поворотные крылышки есть на вертикальном оперении (это руль направления) и на горизонтальном оперении (это руль высоты). Если такую дополнительную часть отклонить, то форма крыла или оперения меняется, и меняется его подъёмная сила. Посмотрим на третью схему (рис. 3 на с. 83). В общем случае подъёмная сила увеличивается в сторону, противоположную отклонению рулевой поверхности.

Расскажу в самых общих чертах, как управляется самолёт. Чтобы подняться вверх, нужно слегка опустить хвост, тогда возрастёт угол атаки крыла, самолёт начнёт набирать высоту. Для этого пилот должен потянуть штурвал (ручку управления) на себя. Руль высоты на стабилизаторе отклоняется вверх, его подъёмная сила уменьшается и хвост опускается. При этом угол атаки крыла увеличивается и его подъёмная сила возрастает. Чтобы спикировать, пилот наклоняет штурвал вперёд. Руль высоты отклоняется вниз, самолёт задирает хвост и начинает снижение.

Наклонить машину вправо или влево можно при помощи элеронов. Они расположены на концевых частях крыльев. Наклон ручки управления (или поворот штурвала) к правому борту заставляет правый элерон подняться, а левый - опуститься. Соответственно подъёмная сила на левом крыле возрастает, а на правом падает, и самолёт наклоняется вправо. Ну а как наклонить самолёт влево - догадайтесь сами.

Рулём направления управляют с помощью педалей (рис. 4). Толкаете вперёд левую педаль - самолёт поворачивает налево, толкаете правую - направо. Но делает это машина «лениво». А вот чтобы самолёт быстро развернулся, нужно сделать несколько движений. Предположим, вы собираетесь повернуть влево. Для этого нужно накренить машину влево (повернуть штурвал или наклонить ручку управления) и в то же время нажать на левую педаль и взять штурвал на себя.

Вот, собственно, и всё. Вы можете спросить, почему же лётчиков учат летать несколько лет? Да потому, что просто всё только на бумаге. Вот вы дали самолёту крен, взяли ручку на себя, а самолёт вдруг начал съезжать вбок, как на скользкой горке. Почему? Что делать? Или в горизонтальном полёте вы решили подняться повыше, взяли штурвал на себя, а самолёт вдруг, вместо того чтобы забираться на высоту, клюнул носом и по спирали полетел вниз, как говорят, вошёл в «штопор».

Пилоту в полёте нужно следить за работой двигателей, за направлением и высотой, за погодой и пассажирами, за собственным курсом и курсами других самолётов и множеством других важных параметров. Пилот должен знать теорию полёта, расположение и порядок работы органов управления, должен быть внимательным и смелым, здоровым, а самое главное - любить летать.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то